Generative and Discriminative Latent Variable Grammars

Slav Petrov
Google Research, New York

Motivation
Grammar Learning

The observed treebank categories are too coarse because the rewrite probabilities depend on context.

Grammar with Latent Variables

Given a treebank over a set of categories learn an optimally refined grammar for parsing.

Automatic Grammar Refinement

Refine the observed trees with latent variables and learn subcategories.

Generative Parameter Estimation

Maximize the joint likelihood:

\[\mathcal{L}_{\text{joint}}(\theta) = \log \prod_i P(t_i, w_i) = \log \sum_{t \in T} P(t, w_i) \]

\[\theta = \arg \max_{\theta \in \Theta} \mathcal{L}_{\text{joint}}(\theta) \]

The parameters can be learned with an Expectation Maximization algorithm. The E-Step involves computing expectations over derivations corresponding to the observed trees. These expectations are normalized in the M-Step to update the rewrite probabilities:

\[\phi_{X \rightarrow Y} = \frac{\sum_i E_\theta[f_{X \rightarrow Y}(t_i)]}{\sum_i \sum_j E_\theta[f_{X \rightarrow Y}(t_i) t_j]} \]

Computing expectations over derivations corresponding to the observed trees can be done in linear time (in the number of words).

Training

Discriminative Parameter Estimation

Maximize the conditional likelihood:

\[\mathcal{L}_{\text{cond}}(\theta) = \log \prod_i P(t_i|w_i) = \log \sum_{t \in T} P(t|w_i) \]

\[\theta^* = \arg \max_{\theta \in \Theta} \mathcal{L}_{\text{cond}}(\theta) \]

The parameters can be learned with a numerical gradient based method (e.g. L-BFGS). Computing the gradient involves calculating expectations over derivations corresponding to the observed trees, as well as over all possible trees:

\[\frac{\partial \mathcal{L}_{\text{cond}}(\theta)}{\partial X_{\rightarrow Y}} = \sum_i \left(E_\theta[f_{X \rightarrow Y}(t_i)|T_i] - E_\theta[f_{X \rightarrow Y}(t)] \right) \]

Computing expectations over derivations corresponding to all possible trees involves parsing the training corpus, which requires cubic time (in the number of words).

Controlling Complexity

Split & Merge Grammars

Use split & merge heuristic with likelihood ratio criterion. Explicitly model number of subcategories. Split each category in two, and merge back the least useful half of the splits.

Multi-Scale Grammars

Use hierarchical features and L1 regularization. Allow each production to reference categories at different levels of granularity.

Results

Overall Parsing Accuracy

Grammars were trained on the Wall Street Journal section of the Penn Treebank (1M words in 40K sentences).

Detailed Breakdown

There are significant differences in the errors that generative and discriminative models make.