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ABSTRACT

To enable downstream language processing, automatic speech
recognition output must be segmented into its individual sentences.
Previous sentence segmentation systems have typically been very
local, using low-level prosodic and lexical features to independently
decide whether or not to segment at each word boundary position.
In this work, we leverage global syntactic information from a syn-
tactic parser, which is better able to capture long distance depen-
dencies. While some previous work has included syntactic features,
ours is the first to do so in a tractable, lattice-based way, which is
crucial for scaling up to long-sentence contexts. Specifically, an ini-
tial hypothesis lattice is constructed using local features. Candidate
sentences are then assigned syntactic language model scores. These
global syntactic scores are combined with local low-level scores in
a log-linear model. The resulting system significantly outperforms
the most popular long-span model for sentence segmentation (the
hidden event language model) on both reference text and automatic
speech recognizer output from news broadcasts.

Index Terms— Speech processing

1. INTRODUCTION

Sentence segmentation takes word sequences transcribed from an
audio document and annotates them with sentence boundaries. Be-
cause sentences are the main units for many natural language pro-
cessing tasks, accurate segmentation is a prerequisite for many kinds
of subsequent processing. For example, current machine translation
and question answering systems operate at the sentence level, being
trained from sentence segmented text, and assuming the presence of
standard punctuation.

Sentence segmentation is typically cast as a local classification
problem at the word boundary level [1, 2, 3], with pause duration
being the most informative feature. However, it is very difficult for
local, word-level models to cope with pauses in the middle of a sen-
tence, and oversegmentation is a common result (see the example in
Figure 1). To rule out such spurious segmentations, a model needs
a broader view of the hypotheses, one which can assess the context
more globally.

Two ways of implementing longer-span information have
been proposed in previous work. Hidden event language models
(HELM) [4] use spans of up to 5-grams, which on one hand are
still far below the average sentence length, yet on the other hand
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require training from a very large corpus to overcome data sparsity.
In contrast, [5] uses a rich set of non-local features including parser
scores, but their feature choice and system design require them to
rerank full segmentations. Because the number of full segmenta-
tions is exponential in the number of words in the lattice, it is only
feasible for the short-sentence contexts they consider, and even then
it requires long discourses to be broken into short segments before
being analyzed.

In this paper, we use an estimate of the grammaticality of sen-
tence hypotheses to improve sentence segmentation quality, while
operating in a model which permits efficient search over entire dis-
courses. On top of standard local features, which are described
below, we score potential sentences using the generative syntactic
language model induced by a probabilistic context-free grammar
(PCFG) from a state-of-the-art syntactic parser. Of course, these
scores are more expensive to compute than the local scores, and, for
added efficiency, it is advantageous to skip the scoring of clearly
suboptimal candidate sentence spans. We therefore use a two-pass
approach. First, a word boundary level model based on prosodic
and n-gram features is used to construct a lattice of sentence can-
didates. Low-scoring spans are pruned and the remaining spans are
scored with the parser. The most probable path in the resulting lat-
tice is then extracted as the final full segmentation. To be able to
better handle noisy automatic speech recognizer (ASR) utterances,
which are out-of-domain for standard treebank parsers, we use un-
supervised domain adaptation and self-train the parsing grammar on
speech transcripts. Sentence level information from the parser re-
sults in significantly better sentence segmentation performance both
on forced alignments and speech recognizer output, and the system
remains linear in the length of the input discourse.

2. MODEL

In sentence segmentation, we are given a sequence of words
w = w1 . . . wn and we are asked to output a segmentation list
b = b0 . . . bk, where each bi is the index where the i-th sentence
ends (b0 = 0 and bk = n). Note that this is different from the
usual boundary versus non-boundary notation. Assume we have a
vector of local features at each point i, f(w, i), which represents the
local information at that point. As detailed below, these features are
prosodic (such as pause duration) and lexical (n-gram identity) for
our model. Then a local log-linear model of sentence segmentation
takes the form

P (b|w) ∝ exp

0@|b|−1X
i=1

θ>f(w, bi)

1A (1)



where θ is a weight vector scoring the relative contributions of the
various features.1 With just local features, the optimal segmentation
of an entire sequence breaks at points where θ>f(w, i) > 0. At
this point, the model is simply a collection of independent logistic
regressions at each position.

We would like to additionally assign scores to spans (i, j) based
on factors such as their grammaticality as sentences. Formally, we
add features g(w, i, j) to each span wi . . . wj . In the present work,
the only span feature will be the log probability from the parser, as
described below, but in principle arbitrary features are possible. The
model with pair features takes the form

P (b|w) ∝ exp

0@|b|−1X
i=1

θ>f(w, bi) + θ>g(w, bi−1, bi)

1A (2)

Here, bi−1 is the index of the word before the first word of sen-
tence i. Essentially, the (log) score of a hypothesis is the weighted
combination of the local features and the span features for the seg-
mentation points used in that hypothesis. The model is now formally
a semi conditional random field (CRF) where the segment features
are the span scores and the node features are the local scores. Find-
ing the optimal b can be done using a minor variant of the standard
Viterbi algorithm and computing expectations over both segmenta-
tion points and spans can be done using a corresponding forward-
backward algorithm [6].

Of course, features can be associated with higher-order contexts,
such as adjacent sentence spans. The model of [5] includes such ar-
bitrary features and as a result loses the efficient inference we main-
tain. We therefore see the present model as an effective point where
central global information can be incorporated yet where decoding
is practical without making both short sentence and hard discourse
break assumptions.

2.1. Local boundary features

Our local features include both lexical and prosodic features around
the boundary considered. Lexical features are made of word n-
grams and prosodic features include pause and phoneme duration,
speaker normalized pitch and energy on both sides of the boundary,
discontinuity of those features across the boundary and estimated
speaker changes (essentially the same features as used in [1]).

The weights for these local features alone can be learned using
a variety of methods; we used a boosting approach in which features
are incrementally added one at a time.2 Note that while boosting
minimizes not the log loss but rather the exponential loss, we found
it convenient for its incremental properties (we return to this point
below). This classifier is referred to as local in the results.

2.2. Syntactic span features

Our only span feature is the log-probability of that span as a sen-
tence according to a (syntactic) language model. In principle, any
language model could be used as a grammaticality model. In fact,
if we used an n-gram model over words, this formulation would be
rather similar to the popular HELM [4], though it would not exploit
the efficiencies that local language models allow. However, we use a

1Note that in this formulation, only the positions where b does segment w
have their features explicitly included in the scoring. However, it is equiva-
lent to a model in which non-segmented positions are also scored via negated
feature vectors.

2Implementation available at http://code.google.com/p/icsiboost

syntactic language model based on a probabilistic context free gram-
mar (PCFG). For a PCFG, the probability of a sentence hypothesis
s can be computed by summing the probabilities of all valid parse
trees t covering that sentence:

P (s) =
X
t:s

P (t) =
X
t:s

Y
r∈t

P (r) (3)

where the probability of a parse tree is just the product of the proba-
bilities of the productions r used to construct it [7]. This summation
can be computed in time cubic in the length of the sentence, and can
be vastly accelerated using many pruning techniques established in
the parsing literature [8].

The ability of the underlying grammar to distinguish grammat-
ically well formed sentences from ungrammatical sentence chunks
will be crucial for the final performance of the system. In our experi-
ments we use the grammar of the Berkeley parser [8].3 This grammar
gives state-of-the-art parsing performance on a variety of languages,
and is because of its generative nature very well suited as syntac-
tic language model. The grammar is automatically learned from a
treebank following a latent variable approach by iteratively splitting
non-terminals to better represent the data (for example, contextual
variants of “noun phrase” are automatically inferred).

To improve the adequacy of the grammars to speech data, we
retrained it for our purposes. Since ASR output has no case infor-
mation and sentence internal punctuation, we stripped off all sen-
tence internal punctuation and lowercased all words before training
the parser on the Wall Street Journal (WSJ) section of the Penn Tree-
bank. To further adapt the parser to the speech domain, we decided
to self-train the parser on speech data: we parsed the speech training
data using a grammar learned on correct parse trees from the tree-
bank, and trained a new grammar using this unsupervised ground
truth. While this process will likely introduce wrong parses, it serves
as a form of domain adaptation and improves the parser’s ability to
handle disfluencies and other speech specific phenomena which do
not occur in textual corpora.

Note that once we have span features, training, in principle, be-
comes more complex. However, in practice, we had only a sin-
gle span feature. Therefore, we found it effective to first train on
the local features only, freeze their weights, and perform a one-
dimensional search for the optimum weight for the single span fea-
ture. This approach parallels the incremental boosting approach used
for the local features and gave good results (see below) with rapid
training. This training regime is also reminiscent of the piecewise
training for CRFs presented in [9].

2.3. HELM span features

To contrast our parser-informed language model, we also combine
the local features with an HELM feature (described in [1]) on the
spans in place of the parser score. A HELM is a generative model of
the sequence of words interleaved with boundary and non-boundary
events P (w1e1 . . . wnen) where ei is simply mapped from sentence
indexes in equation 2. The HELM can be used alone or in con-
junction with a local classifier by converting its output to pseudo-
likelihoods. Additionally, word-level posterior probabilities can be
computed using forward-backward decoding, allowing to effectively
use the HELM output as a local feature in our model (and combine
it with the grammar).

3Implementation available at http://nlp.cs.berkeley.edu



3. HYPOTHESIS LATTICE PRUNING

Given a sequence of n words, we want to find the most likely se-
quence of sentences according to our model as stated in Eq. 2. How-
ever, evaluating all possible sentence hypotheses is prohibitive since
there are up to n2 possible sentence spans and the parser runs in n3

time. To get a reasonable processing time, we follow a two pass
approach where a local word boundary model using prosodic and n-
gram features is used to construct a lattice of sentence hypotheses.
We use the local model only to rule out unlikely sentence bound-
aries, but not to make hard decisions about the existence of a sen-
tence boundary.

This is in contrast to [5], where the local model is not only used
for constructing a lattice but also for making hard decisions. Those
hard decisions are necessary because they use a reranking approach
which scores entire segmentation paths. The number of paths how-
ever is exponential in the number of potential boundaries, requiring
them to frequently make hard decisions and allowing only a small
number of rerankable boundaries to remain in between. While their
approach is justified in the telephone speech domain, where speaker
turns are rarely long, one needs a more tractable solution to handle
general sentence segmentation tasks.

We construct our lattice in a way which attempts to generate the
best lattice in terms of oracle performance. We do not need to restrict
the size of sub-lattices (unlike [5]) because the model processes fea-
tures at the sentence level and can therefore be efficiently globally
decoded. In addition, we exploit two practical pruning strategies.
First, we restrict the maximum sentence length to 50 words. Sec-
ond, rule out sentence boundaries that get assigned a very low score
by the local model. Both greatly decrease the number of spans the
parser must score with little cost in search optimality. Figure 1 shows
the sentence hypothesis lattice for a sequence of words, where can-
didate sentence spans are shown by arcs. For example, the score of
a sentence boundary (that is, the posterior probability of a sentence
boundary) in the local model after the word new is very low, hence
no sentence boundary is allowed at that location for the full model.
An (incorrect) sentence boundary after the word president is very
likely according to the local classifier, and so that point is left as a
candidate boundary. While the local model would incorrectly split
here, the addition of the global syntactic feature removes this error.

4. EXPERIMENTS

The data set used for our experiments is a subset of the TDT4 English
data.4 It consists of 200 hours of close-captioned broadcast news.
We use one million words for training, 83k words as a development
set and 84k words as the test set. The average sentence length is
15 words. All the data is recognized using SRI’s English broadcast
news ASR system, and the word error rate is estimated to be around
18%.

For grammaticality assessment, we rely on grammars from the
Berkeley parser [8] as described in section 2. To evaluate the im-
portance of parsing accuracy, we present experiments with several
grammars. The first is a refined grammar which was trained on the
WSJ using the algorithm described in [8]. The second is the WSJ
grammar after self-training on speech data. We refer to these gram-
mars as WSJ and TDT4, respectively. A third grammar, TDT4*, is
a baseline grammar that was obtained by the same domain adapta-
tion procedure but without splitting the grammar symbols. We also
compare the grammar approach to a hidden event language model

4LDC publication LDC2005S11.

yesterday when the new president came in the wind shifted
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Fig. 1. Illustration of the scores output by a local classifier and the
resulting lattice.

System Dev. Test
HELM alone 56.54 56.65
HELM w/ lattice 74.73 73.42
WSJ 77.32 76.00
TDT4 77.98 76.78
TDT4* 71.06 69.86

Table 1. Our models with global syntactic information outperform
a HELM on the same lattice when a refined grammar is used (local
features are excluded here).

(HELM) [4] trained on the same amount of data, as HELM repre-
sents the most popular alternative source of a global feature.

Figure 2 shows the maximum recall and precision that can be
obtained on the development set for a given size of the hypothesis
lattice. Even for a number of arcs equal to only the number of words
(i.e. a size factor of 1), both values are much higher than the local
model alone, leaving lots of space for improvement. These graphs
are plotted to show the upper-bounds that can be achieved for this
task, if the grammar only makes correct decisions. At a size factor
of 1, it is also noticeable that the operating point is close to the knee
of the curve, meaning that a larger lattice will only slightly improve
the oracle. Therefore, all the following experiments are performed
on lattices of this size factor. The figure also shows the oracle for
lattices constructed from the model that is the combination of the
local model with a HELM. The intuition for running such an exper-
iment is that even though word n-grams and syntactic parses are not
orthogonal sources of information, one might benefit from the other.

Table 1 presents the performance of the HELM alone and its
comparison to the grammar, as a language model, under fair con-
ditions (that is, when it is given the same pruned lattice and local
features are ignored, effectively running the model on span features
only). These experiments try to factor out the effect of prosodic
information and compare the linguistic modeling properties of the
parser and the HELM. While the HELM on its own performs poorly,
it is more competitive on a lattice constructed by the local model,
which indirectly imports the value of those features. When given the
same lattice, the WSJ and TDT4 grammars significantly outperform
the HELM, showing the potential of grammatical features even by
themselves. The low accuracy of the baseline grammar TDT4* in-
dicates that high treebank parsing performance is crucial for precise
syntactic modeling.

Table 2 presents F-measure results for different feature combi-
nations. Unlike in the previous table, prosodic information not only
affects the lattice but also the global model through the local classi-
fier features (local features alone or HELM combined with local fea-
tures). The combined versions of the WSJ and the TDT4 grammar
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Fig. 2. Oracle results for the lattice made from local decisions. Maximum fmeasure and recall are much higher than the local model
performance (F = 76.33 R = 81.71 P = 71.61). The operating point at a size factor of one is denoted by an horizontal line.

Grammar Features Ref. ASR
-

local

76.14 62.87
WSJ 78.26 64.65
TDT4 79.55 66.04
TDT4* 74.51 62.08
- 78.51 64.62
WSJ local 80.00 66.52
TDT4 + HELM 80.48 67.32
TDT4* 77.90 63.98

Table 2. F-measure results for local features alone, local combined
with HELM, and their combinations with grammaticality features
estimated from different grammars: the original grammar (WSJ),
an adapted grammar (TDT4), and an adapted but unsplit grammar
(TDT4*). Results are presented on the test set on both reference text
and ASR output.

outperform the local model significantly.5 The unsupervised setting
allows even greater performance and this grammar, when combined
with Boosting, is significantly better than the HELM combined with
local features, showing the benefits of the approach over the classi-
cal language model. The best result is achieved by combining local
features, HELM features, and the adapted grammar scores.

The baseline grammar, TDT4*, trained using non-lexicalized,
non-split production rules, seems to be less effective as a language
model for sentence segmentation. The resulting performance is be-
low the local models alone and would probably be even lower in
the absence of local lattice pruning. Improved parsing performance
seems to substantially help sentence segmentation.

Measuring the grammaticality of the sentence hypotheses is an
effective feature for sentence segmentation. However, there are cases
where the grammar alone cannot disambiguate (hence the necessity
of punctuation in written language). Consider the following exam-
ple: “John left at two. Jane will arrive”. The sentence boundary
could very well be placed differently, associating the temporal mark
to Jane’s arrival: “John left. At two, Jane will arrive.” Both sentence
hypotheses are grammatically correct, while the information con-
veyed is different. When spoken, the former example will likely con-
tain a pause between “two” and “Jane” while in the latter, a pause can
be placed between “left” and “At” and also in place of the comma.
This illustrates why local acoustic features add value over lexically
derived grammaticality.

5Two-tailed test at 95% using the sigf package from http://www.coli.uni-
saarland.de/∼pado/sigf.html

5. CONCLUSION

We introduced a sentence segmentation model which combines
global syntactic scores with local prosodic and lexical scores in
a log-linear framework. Local predictions are used to generate a
pruned sentence hypotheses lattice. In contrast to previous work, we
do not require the local model to break up a given word sequence
into small lattices by making hard decisions at regular intervals, but
rather prune only where highly confident. Each sentence hypothesis
is then scored with a state-of-the-art syntactic parser and the globally
most likely segmentation is efficiently extracted via dynamic pro-
gramming. Experimental results show that this model outperforms
the most popular long-range sequence model for sentence segmen-
tation (HELM [4]) on reference text and ASR output. Furthermore
we show that the combination of HELM and syntactic scores yields
additional improvements, indicating that they are capturing different
phenomena.
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